ECON 3510 - INTERMEDIATE MACROECONOMIC THEORY Fall 2015 Mankiw, Macroeconomics, 8th ed., Chapter 5

Chapter 5: Inflation

Key points:

- Quantity theory
- Money demand
- Costs and benefits of inflation
- Why inflation?
- Classical dichotomy

The Quantity Theory of Money:

- Key equation:
 - -MV = PY
 - -M = money supply
 - -V = velocity of money = # of times money changes hands
 - -P =the price level
 - -Y = real GDP (so PY = nominal GDP)
 - \Rightarrow \$ value of all stuff bought (*PY*) = # of times each dollar trades hands times the number of dollars
 - e.g., bread economy:
 - * 20 loaves of bread (Y=20)
 - * 1.00 per loaf (P=1)
 - * \$5 in the economy (M=5)
 - * \Rightarrow each dollar bill must trade hands 4 times: $M \times V = 20 \times 1 \Rightarrow 5 \times V = 20 \Rightarrow V = \frac{20}{5} = 4$
- Money demand:
 - -M/P =real money balances
 - * e.g., how many loaves of bread the stock of money can purchase
 - $-(M/P)^d$ = demand for real money balances
 - For now, we'll assume that people want to hold money equal to some fraction of their income:
 - $(M/P)^d = kY$
 - $* \ 0 < k < 1$
- Equilibrium: Supply = Demand
 - $(M/P)^d = M/P$
 - $\Rightarrow M/P = kY$
 - $\Rightarrow M(1/k) = PY \rightarrow$ rewrite as MV = PY where V = 1/k

- Interpretation:
 - * If people want to hold lots of money:
 - * $\rightarrow \Rightarrow k$ large $\Rightarrow V = 1/k$ is small
 - * $\,\rightarrow$ Money doesn't change hands very often
 - * If people don't want to hold much money:
 - $* \rightarrow \Rightarrow k \text{ small} \Rightarrow V = 1/k \text{ is large}$
 - * \rightarrow Money changes hands a lot

Money and Inflation:

- Let's assume, for now, that V is constant $\rightarrow V = \overline{V}$
- $\Rightarrow M\bar{V} = PY$
- Write out the quantity equation (MV = PY) as percent changes:

$$-\%\Delta M + \%\Delta V = \%\Delta P + \%\Delta Y$$

• Inflation is the $\%\Delta P$:

$$- \% \Delta P = \% \Delta M + \underbrace{\% \Delta V}_{=0 \text{ b/}cV = \bar{V}} - \% \Delta Y$$
$$- \Rightarrow \% \Delta P = \% \Delta M - \underbrace{\% \Delta Y}_{\% \Delta Y}$$

exogenous for now: take $K\ \&\ L$ as given

- Here we are assuming K and L are fixed as we have been doing in these long run models.

$$- \Rightarrow \% \Delta P = \% \Delta M$$

- * Inflation is directly related to the money supply
- $\ast\,$ Key result of the QTM
- * Milton Friedman famous for: "Inflation is always and everywhere a monetary phenomena."
- * Central bank has ultimate control over inflation
- * SHOW graphs of money vs. inflation

Inflation and Interest Rates:

- Fisher equation: $r = i \pi \Rightarrow i = r + \pi$
- Fisher Effect \rightarrow a 1% \uparrow in the inflation rate \uparrow the nominal interest rate (i) by 1%
- SHOW graphs of inflation and interest rates
- 2 real rates:

- ex ante:
$$\rightarrow r = i - \underbrace{\pi^e}_{\text{expect. infl.}}$$

- $\text{ ex post:} \rightarrow r = i \pi$
- These two differ if actual inflation is not what is expected

Interest Rates and Money Demand:

• Opportunity cost of holding money is that you give up the ability to lend it and earn r

- (Expected) Return on holding money is $-\pi^e$ b/c higher prices mean same dollar buys less
 - Since the expected return to holding money equals the negative of the inflation rate, we see that inflation imposes a cost on holding money
 - This is called the "inflation tax"
- Total cost of holding money equals:
 - the opportunity cost minus the return on holding money:
 - $-r+\pi^e=i$
 - \Rightarrow the nominal interest rate is the cost to holding money!
- Now, write the money demand function as a function of income and interest rates:
 - $(M/P)^d = L(i, Y)$ $* \frac{\partial (M/P)^d}{\partial i} < 0$

*
$$\frac{\partial (M/P)^d}{\partial V} > 0$$

• In eq'm, Supply = Demand

$$- \Rightarrow (M/P)^d = M/P = L(i, y)$$

- $\Rightarrow M/P = L(r + \pi^e, Y)$, by Fisher Eq'n
- \Rightarrow demand for real money balances depend on expected inflation
 - * Higher expected inflation means higher i, which means lower demand for money balances
 - * Holding constant M; if money demand falls, then prices rise to maintain our equilibrium (supply = demand)
- DRAW flow of monetary policy: money suppy → price level → inflation rate → nominal interest rate → nominal interest rate → money demand → price level....
- Changing money supply has direct and indirect effects on inflation rate (both saying that increase M increases π)

Costs of Inflation:

- Expected inflation:
 - Shoe-leather costs (more time going to ATM)
 - Menu costs (costs to changing prices)
 - Changes in relative prices lead to inefficient allocations (b/c of menu costs, prices are sticky, so not all move at once)
 - * Catalog example in text is best I can think of...
 - Changes in tax liability b/c taxes are on nominal amounts
 - Makes money's role as a unit of account and store of value less valuable
- Unexpected inflation:
 - Redistributes wealth between lenders and borrowers (when lending at fixed nominal rates)
 - * Higher than expected inflation benefits borrowers (they pay back in dollars worth less than those they borrowed)
 - $\ast\,$ e.g., Janet lends me money. We agree to an 8% nominal rate b/c she wants a 6% return and expects 2% inflation

- * $i = r + \pi^e = 6 + 2 = 8$
- * Turns out, inflation is 5%
- $* \ \to r = i \pi = 8 5 = 3\%$
- $\ast\,$ I end up paying a real interest rate of only 3% and thus Janet only gets a 3% return on her money
- Ok, but if inflation expected, then Janet could have just charged a higher nominal interest rate to get a higher real rate of returns. BUT,...
- High levels of inflation go hand in hand with high variability in inflation
- This uncertainty in the inflation rate means that people less likely to write contracts, b/c they have additional risk

Benefits of Inflation:

- "Greases the wheels" of the labor market
 - There is difficulty lowering workers nominal wages (i.e., they are "sticky" could be due to psychology or institutional features like unions)
 - Inflation lowers real wages when the nominal wage is fixed
 - DRAW labor market for blacksmiths when lower real wage, Demand shifts out implies higher nominal wage

Causes of Inflation:

- Revenue source
 - Printing money is a source of revenue and if the gov't controls the printing press it have the incentive to print money to buy stuff
 - Called seinorage
 - Note talk of trillion dollar coin
 - Leads to name "inflation tax"
- Commitment problems
 - Gains to surprise inflation
 - * printing money can lead to short term stimulus (e.g., employment example noted before)
 - Fiscal pressure
 - * Gov't budget can be financed by:
 - * \rightarrow the fiscal authority
 - * \rightarrow the monetary authority
 - * If the monetary authority is "weak" if could be forced to finance with sienorage
 - * Or if spending is out of control, need to finance by printing money
 - Regional interactions
 - * What if each state could print U.S. dollars?
 - * That state would get all the benefits from each dollar printed, but only pay part of the inflation tax (b/c tax spread across all states using dollars)
 - * \rightarrow Implies inflation too high
 - $* \rightarrow$ e.g., Argentina in the 1980's

* This is the reason that EU member nations and US states have balanced budget amendments - don't want the moral hazard of a state running large deficits hoping to be bailed out by central bank

The Classical Dichotomy:

- Dfn: The idea that real and nominal variables can be analyzed separately
- Chap 3 dealt with variables measured as quantities (real variables)
 - real GDP
 - the capital stock
 - hours of work
 - the real wage
 - the real interest rate
- Chap 4 and 5 have dealt with variables measured in dollars (nominal variables)
 - the price level
 - the inflation rate
 - nominal GDP
 - the dollar wage
- Thus you'll notice that we've been studying real and nominal variables separately.
- The classical dichotomy holds in more long-run, neoclassical economic models.
 - We'll break from this when we move to models of the economy in the short run
- Implications of the classical dichotomy
 - nominal variables don't influence real variables in classical models
 - Monetary neutrality
 - * The irrelevance of money for describing the movement of real variables
 - $\ast\,$ This is true of the long run models we've seen so far
 - * We'll relax this later when we talk about models of the economy in the short run